default n. 1.不履行;違約;拖欠。 2.【法律】不履行債務(wù);缺席。 3.欠缺,缺乏。 judgment by default 缺席裁判。 make default 缺席。 suffer a default 受缺席裁判。 be in default 不履行(契約)。 in default of 因無(wú)…,若缺少…時(shí),若沒有…時(shí)(He was silent in default of any excuse. 他無(wú)可推諉,啞口無(wú)言)。 vi.,vt. 1.拖欠(欠款等),不履行。 2.(使)不到案;(比賽)不出(場(chǎng)),不參加到底。 3.缺席裁判(某人),因不出場(chǎng)而輸?shù)?比賽)。 defaulting subscriber (電話)欠費(fèi)用戶。
Transforming the document shows the results of the default rules for white space stripping 對(duì)該文檔的轉(zhuǎn)換演示了應(yīng)用空白去除的缺省規(guī)則的結(jié)果:
That is , a visual designer uses default rules to generate the value of a property ,也就是說(shuō),可視化設(shè)計(jì)器使用默認(rèn)規(guī)則來(lái)生成屬性( property )值。
Applying this attribute to an assembly tells the obfuscation tool to use its default rules for the assembly type 將此屬性應(yīng)用到某一程序集會(huì)通知模糊處理工具對(duì)該程序集類型使用其默認(rèn)規(guī)則。
A rough set model to mine default rules was presented in order to reason and solve the decision question with incomplete information 摘要提出了一種基于粗集的缺省規(guī)則挖掘模型,以利于在信息不完備情況下進(jìn)行推理和決策。
Most fields are processed by the default rule , which copies the original data , but the date and quantity fields have special templates to reformat the date and to supply missing information , respectively 大部分字段都由默認(rèn)規(guī)則處理,即復(fù)制原始數(shù)據(jù),但是date和quantity字段有專門的模板,分別用于重新格式化日期和提供丟失的信息。
A analytical theory is established by putting causal elements into partial states and actions , which deepens our understanding of event causation at the level of partial states and actions . ( 3 ) a causal rule representation is mapped into default logic formalism , based on the examination of general properties of causation . the default rule representation provides a concise syntactic and semantic formalism for potential causal relations to be used in causal reasoning models such as predicting , explaining and diagnosing ( 2 )通過對(duì)因果關(guān)系的可能類型的全面分析,給出了因果關(guān)系的結(jié)構(gòu)與組成元素,特別是區(qū)分了潛在的因果關(guān)系內(nèi)的原因、結(jié)果和因果場(chǎng)中的激活條件,并且把它們同半狀態(tài)與動(dòng)作對(duì)應(yīng)起來(lái),建立了關(guān)于因果關(guān)系的分析理論。
In third part , we established two algorithm : data reduct and mdrbr ( mining default rules based on rough set ) , the objective is to acquire diagnostic knowledge from cases automatically from the diagnosed cases database , in the end established knowledge database that could be used for consequence . and in this part , we also discussed question how to inosculate between acquire knowledge by data mining and experience of clinician , and estimated for knowledge 從第三部分開始,在經(jīng)典粗糙集理論的基礎(chǔ)上建立適合于醫(yī)學(xué)信息數(shù)據(jù)挖掘的算法:數(shù)據(jù)簡(jiǎn)約和默認(rèn)規(guī)則挖掘算法mdrbr ( miningdefaultrulesbasedonroughset ) ,將診斷知識(shí)從確診病例數(shù)據(jù)庫(kù)中自動(dòng)的獲取出來(lái),最終形成可用于推理的知識(shí),還討論了對(duì)于所挖掘到的知識(shí)如何與臨床醫(yī)生的經(jīng)驗(yàn)融合的問題,以及知識(shí)的初步評(píng)價(jià)。
There are follow innovative idea : solving the bottleneck problem in constructing medicinal assisted diagnosis system using technology of data mining ; starting with classical rough set theory , established two algorithms : data reduct and mdrbr ( mining default rules based on rough set ) , the objective is to acquire diagnostic knowledge from cases automatically from the diagnosed cases database , in the end established knowledge database that could be used for consequence 本研究的創(chuàng)新點(diǎn):使用數(shù)據(jù)挖掘技術(shù),解決醫(yī)學(xué)輔助診斷專家系統(tǒng)開發(fā)過程中的瓶頸問題;從經(jīng)典的粗糙集理論入手,結(jié)合確診病例數(shù)據(jù)庫(kù)和臨床診斷的特點(diǎn),得到兩種數(shù)據(jù)挖掘算法:數(shù)據(jù)簡(jiǎn)約算法和默認(rèn)規(guī)則挖掘算法mdrbr ( miningdefaultrulesbasedonroughset ) ,從已確診病例數(shù)據(jù)庫(kù)中獲得骨腫瘤診斷知識(shí),建立診斷知識(shí)庫(kù)。